ABSTRACT

Real-time and off-line processing of continuous-time signals by digital means (digital signal processing [DSP]) has become a viable processing mode over analog means for several reasons, some of which are digital signal processors, microcontrollers, and microprocessors. These are inexpensive, programmable, reproducible, consume low power, have computing speeds suitable for signals with bandwidths beyond base band video, and can operate in extreme environments. Some broad application areas of DSP are automotive industry, consumer electronics, communication systems, and medical systems. Since real-world signals are continuous in time, the technologist must properly interpret results of

processing signals by digital means. This requires an understanding of the origin of and relationship among the basic tools used for DSP. We shall first consider the Fourier series (FS) concept for continuous-time periodic signals. Everything that follows will be based on this concept. This chapter is intended for those who have some experience with the material generally covered in

a first course on continuous-time signals and systems, and would like a brief introduction to the fundamentals of DSP.