ABSTRACT

This is probably the most used and yet abused test of them all. Affectionately known as ‘meggering’, an insulation resistance test is performed in order to ensure that the insulation of conductors, accessories and equipment is in a healthy condition, and will prevent dangerous leakage currents between conductors and between conductors and earth. It also indicates whether any short circuits exist. Insulation resistance, as just discussed, is the resistance meas-

ured between conductors and is made up of countless millions of resistances in parallel (Figure 5.1). The more resistances there are in parallel, the lower the overall

resistance, and in consequence, the longer a cable the lower the insulation resistance. Add to this the fact that almost all installation circuits are also wired in parallel, it becomes apparent that tests on large installations may give, if measured as a whole, pessimistically low values, even if there are no faults. Under these circumstances, it is usual to break down such large

installations into smaller sections, floor by floor, sub-main by

submain etc. This also helps, in the case of periodic testing, to minimize disruption. The test procedure is as follows:

1 Disconnect all items of equipment such as capacitors and indicator lamps as these are likely to give misleading results. Remove any items of equipment likely to be damaged by the test, such as dimmer switches, electronic timers etc. Remove all lamps and accessories and disconnect fluorescent and discharge fittings. Ensure that the installation is disconnected from the supply, all fuses are in place, and MCBs and switches are in the on position. In some instances it may be impracticable to remove lamps etc. and in this case the local switch controlling such equipment may be left in the off position.