ABSTRACT

46The model of cure-reaction induced microphase separation proceeding via nucleation and growth mechanism with a moderate reaction rate and far enough from the critical point is proposed. The classical frequency of elementary acts of nucleation was adopted. The model of particle growth with equilibrium boundary conditions was developed to describe the changes in concentration profiles both inside and outside the particle and particle growth caused by diffusion. With the help of numerical modeling, single particle nucleation and growth at different reaction rates and nucleation delays was studied. Scaling laws for short and long times were found; in particular, the final particle size, rmax, depends on the overall reaction time, tproc, as rmax ∝ tproc1/2. The particle size distribution was qualitatively characterized. Ways to deal with particle ensembles and take into account effective interaction of particles were indicated.