ABSTRACT

The previous chapters have demonstrated that liquid-liquid extraction is a mass transfer unit operation involving two liquid phases, the raffinate and the extract phase, which have very small mutual solubility. Let us assume that the raffinate phase is wastewater from a coke plant polluted with phenol. To separate the phenol from the water, there must be close contact with the extract phase, toluene in this case. Water and toluene are not mutually soluble, but toluene is a better solvent for phenol and can extract it from water. Thus, toluene and phenol together are the extract phase. If the solvent reacts with the extracted substance during the extraction, the whole process is called reactive extraction. The reaction is usually used to alter the properties of inorganic cations and anions so they can be extracted from an aqueous solution into the nonpolar organic phase. The mechanisms for these reactions involve ion pair formation, solvation of an ionic compound, or formation of covalent metal-extractant complexes (see Chapters 3 and 4). Often formation of these new species is a slow process and, in many cases, it is not possible to use columns for this type of extraction; mixer-settlers are used instead (Chapter 8).