ABSTRACT

The rise of the natural sciences is, with hindsight, one of the greatest transitions in human history, perhaps comparable only to the emergence of agriculture (see scene 8). It is a pinnacle of self-critical thinking. What was involved in this revolution? New instruments such as the telescope and the microscope opened new worlds. Mathematics was applied to describe reality. Experiments were used to test ideas. Such experiments often dealt with situations that were unrealistically simple: balls rolling down inclined planes, pendulums swinging regularly, etc. Theories developed and tested in those simplified realities turned out to be applicable well beyond their original context. These theories have become more and more adequate over time, once scientists incorporate in their models more aspects of the processes concerned. In recent years the study of complex and chaotic systems has become a booming business. These systems are of such a complexity that one cannot predict the future of the system in full detail, even though the actual development can be clearly understood post factum. The weather is a familiar example; all mechanisms involved are understood, but still we cannot predict reliably what the weather will be three weeks from now – and we know why we are unable to make such predictions.