ABSTRACT

The second approach involves using a nonviral vector such as a polymer, lipid, or liposome. While potentially safer, these synthetic systems are not as effective as viral vectors. Thus, it is critically important that efforts toward creating synthetic gene therapy vectors such as polymers be developed. This book discusses, in broad terms, polymeric delivery systems of all types as well as the significant challenges that one must face in gene therapy delivery. Specifically, gene therapy delivery involves major design initiatives. To succeed, polymers must be able to condense or package DNA into small sizes so that it can be taken up by cells, stabilize the DNA before and after cellular uptake, bypass or escape the cell’s endocytotic pathways, deliver the DNA to the cell’s nucleus, and unpackage DNA by releasing it in active form. In Part I of this book, a number of authors cover these important issues, discussing biological barriers, cellular uptake, trafficking, and even ways of targeting genes to specific cells and tissues.