ABSTRACT

Since the beginning of this century, global economic activities have increased more than 50-fold.1 The incredible rate of growth has raised concerns about the consequences of accelerated production and consumption, and greater attention has been given to development of sustainable economic and industrial practices that rely on natural and renewable sources of energy. One of the most important developments emerged in the utilization of biologically derived polymers, suitable for blending and composite processing. The obvious choice of reinforcement for such biopolymers can be any type of natural fiber. The natural fiber-based biocomposites should be designed according to the following criteria: (1) reliable consolidation of natural fibers and biopolyesters, (2) improved mechanical properties and flexibility as compared to the pure biopolymer, (3) improved biological resistance during the life cycle of the composite, (4) processing and manufacturing methods should be economically justified, and, most importantly, (5) the novel biodegradable biocomposites should be competitive to easily produce

thermoplastic composites. Currently, biocomposites are produced only in a few laboratories for investigative purposes, as the high cost of such composites is dominated by the extremely expensive biopolyesters of limited availability. The present challenge is to design a biocomposite with increased thermomechanical properties at lower costs, and thus economically justify further increase in production of biopolyesters, and generate further reduction in costs. Such a closed economical loop of biocomposites manufacturing will establish a whole new sustainable market. Scientists have approached the point where the first biodegradable biocomposites are being introduced into the automotive market.