ABSTRACT

The complexity of the equilibrium phases and nonequilibrium phenomena exhibited by multicomponent oil-water-surfactant systems is amply demonstrated in numerous contributions in this volume. Therefore, the need for theoretical (and computational) methods that make the interpretation of experimental observations easier and serve as predictive tools is readily apparent. Excellent treatments of the current status of theoretical advances in dealing with microemulsions are available in recent monographs and compendia (see, e.g., Refs. 1–3 and references therein). These references deal with systems consisting of significant fractions of oil and water and focus on the different phases and intricate microstructures that develop in such systems as the surfactant and salt concentrations are varied. In contrast, the present chapter focuses exclusively on simulations, particularly on a first level introduction to the use of lattice Monte Carlo methods for modeling self-association and phase equilibria in surfactant solutions with and without an oil phase. Although results on phase equilibria are presented, we spend a substantial portion of the review on micellization in surfactant-water mixtures, as this forms the necessary first step in the eventual identification of the most essential parameters needed in computer models of surfactant-water-oil systems.