ABSTRACT

Let https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_3.tif"/> be a split exceptional Jordan algebra and let https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_4.tif"/> be the Lie algebra of derivations of https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_5.tif"/> the subalgebra mapping the diagonal idempotents ei into 0. Let https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_6.tif"/> be a commutative Cartan subalgebra of https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_7.tif"/> having roots ± λ p ± λ q , p < q = 1 , 2 , 3 , 4 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/eq76.tif"/> in https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_8.tif"/> We proceed to show that https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_9.tif"/> is a Cartan subalgebra of https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_10.tif"/> and we shall determine the roots in https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_11.tif"/> . We have the decomposition https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_12.tif"/> given on p. 21. The displayed subspaces are invariant relative to ad https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_13.tif"/> and ad https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_14.tif"/> . The induced representations of https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_15.tif"/> are quivalent respectively to the adjoint representation, to the standard representation and to the representations https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_16.tif"/> and https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_17.tif"/> . It follows that ad https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_18.tif"/> acts diagonally in the four spaces, hence in https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_19.tif"/> , and that the weights of are ± λ p ± λ q , p < q , ± λ p , ± ∧ ′ q , ± ∧ p * https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/eq77.tif"/> defined in the proof of Theorem 5. It follows that https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_20.tif"/> is a Cartan subalgebra of https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203756478/4cadc9cc-32ae-4840-8f83-07e1ed499955/content/pg34_21.tif"/> and the indicated linear functions are the roots.