ABSTRACT

Chromatographic techniques have always occupied a somewhat prominent place among bioseparation protocols for enzymes/proteins (Villamon et al. 1999; Lopuska et al. 1999; Feng et al. 1999). Their continued general popularity as a bioseparation strategy is based on the high resolution one can usually achieve. A widely used book is rightly limited to chromatography and electrophoresis while covering high-resolution methods (Janson and Rydén 1989). In the last decade or so, the needs of the biotechnology industry have created immense pressure to develop techniques that can handle large volumes and deliver high purity. Recent chromatographic techniques have met this challenge quite effectively. Displacement chromatography (Chap. 12; Freitag et al. 1999), perfusion chromatography (a convective chromatography) (Fahrner and Blank 1999; Liao et al. 1999), radial flow chromatography (Wallworth 1996), and expanded bed chromatography (Chap. 10; Hjorth 1997; Chase 1998; Galaev 1998) are capable of handling high volumetric throughput. The requirement of high purity has been met by interfacing chromatography with the affinity approach (Yoshikawa et al. 1999; Guyonnet et al. 1999).