ABSTRACT

Seek simplicity, and distrust it. -Alfred North Whitehead

The purposes of this chapter are (i) to develop equations relating the macroscopic properties (dielectric constant, density, etc.) with microscopic quantities such as the atomic radius and the dipole moment, (ii) to discuss the various mechanisms by which a dielectric is polarized when under the influence of a static electric field and (iii) to discuss the relation of the dielectric constant with the refractive index. The earliest equation relating the macroscopic and microscopic quantities leads to the so-called Clausius-Mosotti equation and it may be derived by the approach adopted in the previous chapter, i.e., finding an analytical solution of the electric field. This leads to the concept of the internal field which is higher than the applied field for all dielectrics except vacuum. The study of the various mechanisms responsible for polarizations lead to the Debye equation and Onsager theory. There are important modifications like Kirkwood theory which will be explained with sufficient. details for practical applications. Methods of Applications of the formulas have been demonstrated by choosing relatively simple molecules without the necessity of advanced knowledge of chemistry.