ABSTRACT

Data quality of BIM models is a key determinant in the value that can be extracted out of these data. Yet, despite this importance the discussion of data quality is often relegated to an afterthought. One potential use of BIM model data is the generation of building energy performance simulation models. Within this paper a checking procedure is presented, to ensure that user-supplied BIM models meet threshold data quality criteria and are suitable for the generation of input data files for energy analysis. The checking procedure comprises of three sets of checking operations: consistency, correctness and completeness checks. Consistency checks ensure that the input data are schema compatible; data completeness checks invoke the sequential execution of checking rules to verify the existence of required data; data correctness checks perform more elaborate detection of geometric errors appearing in surfaces, space volumes and clashes between architectural elements, which affect the building energy performance simulation model generation process. The checking procedure has been implemented and tested in two case-study buildings. Although the BIM modelers had been provided with modeling guidelines, multiple inaccuracies and data insufficiencies were still present, highlighting the importance of a posteriori process implementation that checks the validity of the model in relation to the purpose of its use.