ABSTRACT

The prediction and the confirmation that artificial periodic dielectric structures can be used to manipulate electromagnetic wave propagation have significantly affected the development of micro-and nanooptoelectronics1-3. In the literature there is a great diversity in the fabrication approaches to making two-dimensional and threedimensional photonic crystals. Therefore, there is a need to improve the quality of such structures in terms of being more feature-size flexible, materials flexible and less time consuming. Despite the remarkable progress in the fabrication of two-dimensional photonic crystals, there remain significant challenges for the fabrication of 3D photonic crystals, especially for producing sub-micron periodicity for near-IR applications. Many 3D fabrication approaches have been studied on a number of different material platforms. Among them, layer-by-layer stacking using soft lithography or nanoimprint lithography, microassembly of planar semiconductor layers and multi-photon absorption have been investigated to create certain microstructures. However, for the aforementioned approaches, multiple processing steps are generally required and these are not suitable for larger scale (cm2 size) fabrication.