ABSTRACT

ABSTRACT Simulations of blood ow in the cardiovascular system offer investigative and predictive capabilities to augment current clinical tools. Using image-based modeling, the Navier-Stokes equations can be solved to obtain detailed three-dimensional (3D) hemodynamics in patient-specic anatomical models. Relevant parameters such as wall shear stress and particle residence times can then be calculated from the 3D results and correlated with clinical data for treatment planning and device evaluation. Reducedorder models such as open-or closed-loop 0D lumped-parameter models can simulate the dynamic behavior of the circulatory system using an analogy to electrical circuits. When coupled to 3D simulations as boundary conditions, they produce physiologically realistic pressure and ow conditions in the 3D domain. We describe fundamentals and current state of the art of patient-specic, multiscale computational modeling approaches applied to cardiovascular disease. These tools enable investigations of hemodynamics reecting individual patients’ physiology, and we provide several illustrative case studies. These

CONTENTS

7.1 Introduction to Cardiovascular Simulation ................................................................... 164 7.2 Governing Equations for Hemodynamics ..................................................................... 164 7.3 Current Methods for Patient-Specic Modeling ........................................................... 165

7.3.1 Patient-Specic Model Construction ................................................................... 165 7.3.2 Computational Methods for Blood Flow Simulation ....................................... 165 7.3.3 Fluid-Structure Interaction .................................................................................. 166

7.4 The Importance of Boundary Conditions ...................................................................... 167 7.4.1 Inow Boundary Conditions ............................................................................... 167 7.4.2 Outow Boundary Conditions ............................................................................ 168

7.5 Modeling the Circulation with a Lumped-Parameter Network ................................. 170 7.5.1 Windkessel Models ............................................................................................... 171 7.5.2 A Sample Heart Model .......................................................................................... 173 7.5.3 A Coronary Artery Lumped Model .................................................................... 174

7.6 Modeling the Circulation with the 1D Equations of Blood Flow ............................... 175 7.7 Closed-Loop Multiscale Simulations .............................................................................. 175 7.8 Example Case Studies ....................................................................................................... 177

7.8.1 Virtual Surgeries of the Superior Cavopulmonary Connection ..................... 177 7.8.2 Thrombotic Risk in Kawasaki Disease Aneurysms ......................................... 180 7.8.3 Hepatic Blood Flow Distribution in the Fontan Junction ................................ 181

7.9 Future Perspective ............................................................................................................. 184 References ..................................................................................................................................... 186

methods can supplement current clinical measurement and imaging capabilities and provide predictions of patient outcomes for surgical planning and risk stratication.