ABSTRACT

Abstract Superhydrophobicity has been achieved on different paper surfaces via plasma enhanced etching and film deposition. The effects of fiber types and paper making parameters on the superhydrophobic behavior were studied. Achievement of superhydrophobic behavior depends on the formation of nano-scale features on the paper fibers established by selective etching of the amorphous domains in cellulose. Despite different fiber types and paper making processes, superhydrophobicity can be attained provided that plasma etching can occur on the fiber surface to create nano-scale features. Plasma processing conditions that allow the design of superhydrophobic paper or cellulose surfaces with specific adhesion properties are described. The significance of water drop volume on contact angle measurements and thus on characterization and analysis of superhydrophobic behavior of heterogeneous, porous paper substrates is discussed as well.