ABSTRACT

CHARLES Y. CHEUNG, PATRICK S. STAYTON* and ALLAN S. HOFFMAN* Department of Bioengineering, Box 352255, University of Washington, Seattle, WA 98195, USA

Received 8 December 2003; accepted 4 May 2004

Abstract-The serum instability associated with cationic lipoplexes represents one of the major obstacles for the in vivo delivery of nonviral gene therapy vectors. Recently, we have shown that poly(propylacrylic acid) (PPAA), a pH-sensitive polyanionic polymer, can significantly improve the in vitro serum stability of DOTAP lipoplexes and enhance transfection (Cheung etal., Bioconjug. Chem. 12, 906 (2001)). We investigated this serum-stabilizing effect provided by PPAA using methods to identify the specific serum proteins that interact with DOTAP/DNA and DOTAP/DNA/PPAA lipoplexes and determined their modes of interaction with these lipoplexes. Studies showed that only low-density lipoprotein (LDL) caused significant decondensation of DNA from lipoplexes lacking PPAA, but that fully condensed DNA was retained within lipoplexes incorporating PPAA. Another major factor in the loss of transfection activity was due to the reduced cellular uptake of DOTAP lipoplexes upon exposure to serum, with bovine serum albumin (BSA) and high-density lipoprotein (HDL) acting as major contributors to this reduction in vector internalization. In contrast, lipoplexes containing PPAA maintained high levels of uptake into cells in the presence of these proteins. Transfection results generally concurred with the mechanistic studies, suggesting that maintaining effective cellular delivery of intact lipoplexes in the presence of serum proteins is important to retain high transfection efficiencies. These results indicate that the addition of PPAA as a ternary component in DOTAP lipoplexes can overcome some of the serum-related deficiencies encountered with these lipoplexes to provide efficient transfection.