ABSTRACT

Contents 20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458 20.2 Multiuser Dynamic Spectrum Access for OFDM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

20.2.1 Spectrum Management Problem for Interference Channel . . . . . . . . . . . . . . . . . . . . 460 20.2.2 Existing Solutions in the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

20.2.2.1 Iterative Water Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 20.2.2.2 Optimal Spectral Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 20.2.2.3 Iterative Spectral Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464 20.2.2.4 SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464 20.2.2.5 Autonomous Spectral Balancing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

20.3 Game Theory Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 20.4 Friends or Foes Using the Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

20.4.1 Friends in Severe Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 20.4.1.1 The Hungarian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

20.4.2 Foes in Medium Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 20.4.2.1 Resource Allocation Using Virtual Referee Algorithm . . . . . . . . . . . . . . 475

20.4.3 Joint Scheme for Medium Interference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 20.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

Modern wireless communication requires broadband and high-speed connections to meet the increasing demands of the users for applications such as multimedia. Frequency selective fading makes broadband channels prone to high errors. An efficient way to overcome the frequency fading effects is by employing orthogonal frequency division multiplexing (OFDM). Also, the increasing number of users gives rise to co-channel interference among the users. Therefore, resource allocation over OFDM interference channel becomes crucial to cater to the needs of the users while minimizing the co-channel interference. A distributive approach to resource allocation is essential to ensure simplicity of the system. A distributed solution to the resource allocation problem can be implemented in either a cooperative or a noncooperative way. In this chapter, we concentrate on the friends and foes (among distributed users) formed during the resource allocation for interference channel using game theory. Three specific case studies are discussed in detail.