ABSTRACT

Contents 21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 21.2 Medium Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 21.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 21.4 Analytical Model for EDCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 21.5 Game-Theoretical Approach for Admission Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490 21.6 Validation and Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

21.6.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 21.6.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

21.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

Admission control is an important mechanism for the provisioning of the Quality-of-Service (QoS) in the IEEE 802.11e wireless local area networks (WLANs). In this chapter, we present an efficient admission control scheme based on analytical modeling and noncooperative game theory where the access point (AP) and n new users are the players. The decision of admission control is made by virtue of the strategies to maximize the utilities of the players, which are determined by the QoS performance metrics in terms of the end-to-end delay and frame loss probability. To obtain these required performance metrics, we develop a new analytical model incorporating the contention

window (CW) and transmission opportunity (TXOP) differentiation schemes in the IEEE 802.11e protocol under unsaturated working conditions. The efficiency of the proposed admission control scheme is validated via NS-2 simulation experiments. Utilizing the admission control scheme, we investigate the capacity of WLANs under different network configurations and QoS constraints. The numerical results demonstrate that the proposed admission control scheme can maintain the system operation at an optimal point where the utility of the AP is maximized subject to the QoS constraints of both the real-time and non-real-time users. Moreover, this admission control scheme can improve the utility of the AP in WLANs compared to the legacy admission control schemes without the use of game theory.