ABSTRACT

Abbreviations .................................................................................................................................684 33.1 Introduction ....................................................................................................................... 685 33.2 General Characterization of Nanoparticles and Metal Nanoparticles .............................. 685 33.3 Experimental Methods Applied for Characterization of Metal Nanoparticles.................686 33.3.1 Ultraviolet-Visible Spectroscopy .........................................................................686 33.3.2 Fourier Transform Infrared Spectroscopy ...........................................................686 33.3.3 Electron Microscopy ............................................................................................699 33.3.4 Atomic Force Microscopy ....................................................................................699 33.3.5 X-Ray Diffraction .................................................................................................700 33.3.6 Energy-Dispersive X-Ray Spectroscopy ..............................................................700 33.3.7 X-Ray Absorption Near-Edge Structure Spectroscopy and

Extended X-Ray Absorption Fine Structure Spectroscopy ..................................700 33.3.8 X-Ray Photoelectron Spectroscopy ......................................................................700 33.4 Green Synthesis of Metal Nanoparticles Using Plant Extracts: Characterization

and Determination ............................................................................................................700 33.4.1 Gold Nanoparticles ............................................................................................... 701 33.4.2 Silver Nanoparticles ............................................................................................. 702 33.4.3 Palladium Nanoparticles ...................................................................................... 703 33.4.4 Platinum Nanoparticles ........................................................................................ 703 33.4.5 Zinc Oxide Nanoparticles ....................................................................................704 33.4.6 Copper Nanoparticles ...........................................................................................704 33.4.7 Selenium Nanoparticles ........................................................................................ 705 33.4.8 Titanium Dioxide Nanoparticles .......................................................................... 705 33.5 Formation of Metal Nanoparticles in Living Plants ......................................................... 705 33.6 Uptake, Translocation, and Accumulation of Metal Nanoparticles in the Plants ............. 707 33.7 Toxicity of Metal Nanoparticles to Algae ......................................................................... 707 33.8 Effect of Metal Nanoparticles to Vascular Plants ............................................................. 711 33.8.1 Benecial Effects of Metal Nanoparticles to Plants ............................................ 711 33.8.2 Adverse Effects of Metal Nanoparticles to Plants ............................................... 713 33.8.2.1 Ag Nanoparticles .................................................................................. 713 33.8.2.2 ZnO Nanoparticles ............................................................................... 715

AFM Atomic force microscopy CAT Catalase Chlorophyll Chlorophyll DLS Dynamic light scattering EDAX Energy-dispersive x-ray analysis EDS (or EDX) Energy-dispersive x-ray spectroscopy EDXF Energy-dispersive x-ray uorescence EELS Electron energy-loss spectroscopy EPS Extracellular polymeric substance FESEM Field emission scanning electron microscopy FTIR Fourier transform infrared spectroscopy GA-XRD Glancing angle x-ray diffraction HADDF High-angle annular dark-eld imaging HRSEM High-resolution scanning electron microscopy HRTEM High-resolution transmission electron microscopy ICP Inductively coupled plasma LED Light-emitting diode MNPs Metal nanoparticles NIR Near-infrared spectroscopy NPs Nanoparticles OER Oxygen evolution rate PET Photosynthetic electron transport μ-PIXE Proton-induced x-ray emission or microparticle-induced x-ray emission POD Peroxidase QELS Quasi-elastic light scattering PS Photosystem RuBisCo Ribulose-1,5-bisphosphate carboxylase/oxygenase SAED (or SAD) Selected area electron diffraction SEM Scanning electron microscopy SEM-EDS Scanning electron microscope-energy-dispersive spectra SPR Surface plasmon resonance SOD Superoxide dismutase STEM Scanning transmission electron microscopy TEM Transmission electron microscopy UV-Vis Ultraviolet-visible spectroscopy XANES X-ray absorption near-edge structure XAS X-ray absorption spectroscopy XPS X-ray photoemission spectroscopy XRD X-ray diffraction analysis XRF X-ray uorescence μXRF Micro-x-ray uorescence

33.8.2.3 Cu and CuO Nanoparticles .................................................................. 716 33.8.2.4 Al2O3, SiO2, TiO2, and Fe3O4 Nanoparticles ........................................ 717 33.8.2.5 Rare Earth Elements ............................................................................ 717 33.9 Application of Metal Nanoparticles in Phytoremediation Technology ............................ 718 33.10 Concluding Remarks ......................................................................................................... 718 Acknowledgments .......................................................................................................................... 719 References ...................................................................................................................................... 719

Nanomaterials with a characteristic dimension in the range of 1-100 nanometers (nm) are at the leading edge of nanoscience and nanotechnology. In recent years, nanomaterials and specically metal nanoparticles (MNPs) have received particular interest in diverse elds ranging from material science to biotechnology (Huang et al. 2007). Although widespread interest in nanomaterials is recent, the concept was introduced over 40 years ago. Nanomaterials have actually been produced and used by humans for hundreds of years: for example, the beautiful ruby red color of some glass is due to gold nanoparticles (AuNPs) trapped in the glass matrix. In the decorative glaze known as luster, found on some medieval pottery, the special optical properties of the glaze arose from metallic spherical nanoparticles (NPs) that were dispersed in the glaze in a random fashion (Das and Marsili 2011). Michael Faraday in 1857 on his pioneering work “Experimental relations of gold (and other metals) to light” (Faraday 1857) explained the properties of this glaze. Now with advances of science and technology, the morphology of this material, which contains metallic NPs, has been understood. Because of extremely small size and high surface-volume ratio of NPs, the physicochemical properties of NP-containing materials are quite different to those of the bulk materials (El-Sayed 2001). Thus, nanomaterials have potential applications in electronics, photonics, catalysis, information storage, chemical sensing, imaging, environmental remediation, drug delivery, and biological labeling (Huang et al. 2007).