ABSTRACT

Findings Within the last decade, several asymmetric transformations based on silicon-stereogenic reagents or substrates were revisited or invented. [1-4] Aside from the use of silicon-stereogenic chiral auxiliaries in substrate-controlled reactions, [5] a still limited number of remarkable stereoselective processes with a stereogenic silicon as the reactive site were reported, [6] namely the inter-[7] as well as intramolecular [8] chirality transfers from silicon to carbon. Moreover, we had demonstrated that chiral silanes resolve racemic mixtures of alcohols in a non-enzymatic, transition metal-catalyzed kinetic resolution. [9]

During our ongoing investigations directed towards the mechanistic elucidation of the origin of the chirality transfer in a palladium-catalyzed hydrosilylation, [10] we had to perform an extensive screening of silicon-stereogenic tertiary silanes. On that occasion, we became aware that a similar level of stereoselection was obtained when priveleged cyclic system 1a [11] was exchanged for the important acyclic congener 1b [12-15] (Figure 1). We had erroneously missed this known tertiary silane. is was particularly unfortunate in the light of the fact that these silanes are both decorated with three substituents of dierent steric demand and, therefore, display marked stereochemical dierentiation around silicon.