ABSTRACT

Since its invention, graphene, which consists of one to few graphitic layered sp2 bonded 2D carbon allotropes, has become a unique material due to its extraordinary properties like electrical and thermal conductivity, high charge carrier density, carrier mobility, optical conductivity (Nair et al. 2008), and mechanical property (Geim and Kim 2008; Geim and Novoselov 2007; Choi et al. 2010; Lee et al. 2008). Hence it created unprecedented interest in research and industry to be used as nextgeneration electronic and photonic materials. The basic building blocks of all the carbon nanostructures are a single graphitic layer that is covalently functionalized sp2 bonded carbon atoms in a hexagonal honeycomb lattice (as shown in Chapter 8, Figure 8.1), which forms 3D bulk graphite, when the layers of single honeycomb graphitic lattices are stacked and bound by a weak van der Waals force. When the single graphite layer forms a sphere, it is well known as 0-dimensional fullerene; when it is rolled up with respect to its axis, it forms a one-dimensional cylindrical structure called a carbon nanotube; and when it exhibits the planar 2D structure from one to a few layers stacked, it is called graphene. One graphitic layer is well known as monoatomic or single-layer graphene and two and three graphitic layers are known as bilayer and trilayer graphene, respectively. More than 5-layer up to 10-layer graphene

2.1 Introduction ....................................................................................................27 2.2 Overview of Graphene Synthesis Methods ....................................................29