ABSTRACT

Brain-computer interfaces (BCI) allow real-time interaction between brain activity and machine devices by converting brain signals into commands for output devices (see Figure  9.1) such as communication aids and neuroprostheses (Millán et al. 2010). The control of BCI devices can be achieved through noninvasive approaches, that is, through

CONTENTS

9.1 Introduction ........................................................................................................................ 203 9.2 Potential Users of BCIs ...................................................................................................... 205 9.3 Recording Techniques and Input Signals for BCIs ....................................................... 206

9.3.1 BCIs with EEG Input Signals: SCPs, SMRs, and ERPs ..................................... 207 9.3.2 BCIs Based on MEG ............................................................................................... 210 9.3.3 BCIs with Hemodynamic Input Signals ............................................................. 210 9.3.4 NOVEL BCIs: Investigating Input Modalities and Input Signal

Combinations ......................................................................................................... 211 9.3.5 Intracortical BCIs ................................................................................................... 211 9.3.6 Electrocorticography BCI ...................................................................................... 212

9.4 Applications of BCI for Neuroadaptation and Neurorehabilitation .......................... 213 9.4.1 BCIs as Assistive-Technological Answer for Motor-Disabled Users .............. 213

9.4.1.1 Communication Devices ........................................................................ 213 9.4.1.2 Development of BCI Orthoses and Neuroprostheses ........................ 214 9.4.1.3 Mobility Solution and “Smart Homes” ................................................ 215 9.4.1.4 BCI and Entertainment: A Nonconventional Aspect of the BCI ...... 215

9.4.2 The Potential of BCIs for Neurorehabilitation ................................................... 216 9.4.2.1 BCI Learning and Neuroadaptation: Studies in Primates and

Findings in Humans ............................................................................... 216 9.4.2.2 Motor Imagery and the Augmentation of Plasticity .......................... 217 9.4.2.3 Neurofeedback in Neurological and Psychological Disorders ........ 221

9.5 Clinical, Practical, and Ethical Considerations Surrounding BCI ..............................222 9.5.1 Clinical and Practical Issues .................................................................................222 9.5.2 Ethical Considerations .......................................................................................... 224

9.6 Conclusion .......................................................................................................................... 226 Acknowledgments ......................................................................................................................227 References .....................................................................................................................................227

measuring electrical activity [electroencephalography (EEG)], or magnetical activity [magnetencephalography (MEG)], or hemodynamic responses of the brain. Slow cortical potentials (SCPs), sensorimotor rhythms (SMRs), event-related potentials (ERPs), and steady-state visual evoked potentials (SSVEPs) are the main input signals for EEG based BCIs. For the detection of hemodynamic responses technologies such as functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) are used. Invasive BCIs, on the other hand, rely on recording of intracortical signals.