ABSTRACT

Thin Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 13.3 Ion Irradiation of Carbyne-Rich Thin Films . . . . . . . . . . . . . . . . . . 276 13.4 Ion Irradiation of Related Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 277

13.4.1 Asphaltite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 13.4.2 Frozen Benzene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

13.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

The study of the effects induced by ion irradiation of solid materials, in particular solid carbons, is relevant in many fields of science and technology. Here we focus on its relevance in astrophysics. Solid carbon-bearing species are extremely abundant in space both in the gas and in the solid phases. A wide variety of solid carbons are observed in the interstellar and circumstellar medium as well as in many objects of the Solar System including those collected at or nearby Earth (interplanetary dust particles and meteorites). Observed and/or predicted carbon-bearing solids (or large molecules) include species with different hybridizations (sp, sp2, sp3) such as amorphous carbons, polycyclic aromatic hydrocarbons, fullerenes, nanodiamonds, graphite, and carbon chain molecules. The literature in the field is enormous; interesting reviews can be found in a recent special volume of Spectrochimica Acta [1].