ABSTRACT

CONTENTS 5.1 Introduction ................................................................................................ 117 5.2 Polymers...................................................................................................... 120

5.2.1 Material Properties........................................................................ 120 5.2.2 Polymethylmethacrylate and Polycarbonate............................ 121 5.2.3 Cyclic Olefin Copolymer ............................................................. 122

5.3 Master Fabrication..................................................................................... 124 5.3.1 Micromachining Methods............................................................ 124 5.3.2 Bulk Micromachining ................................................................... 125 5.3.3 Surface Micromachining .............................................................. 127

5.4 Hot Embossing........................................................................................... 130 5.4.1 Conventional Hot Embossing Process....................................... 130 5.4.2 Examples of Embossed Structures ............................................. 132 5.4.3 Hot Embossing with Polymer Masters ..................................... 134

5.5 Conclusions................................................................................................. 137 References ............................................................................................. 138

Polymer microfabrication has become a popular alternative to the established silicon and glass-based microelectromechanical system (MEMS) fabrication technologies, particularly for microfluidic and lab-on-a-chip applications [1]. MEMS technologies are revolutionizing chemical and biomedical applications, and have enabled the fabrication of biochips with microchannels for applications such as electrophoresis [2-4], polymerase chain reaction (PCR) [5,6], electrical field flow fractionation [7,8], gas chromatography [9,10], liquid

chromatography [11,12], and DNA separation techniques [13,14]. Such microscale total analysis systems (µTAS) or lab-on-a-chip (LOC) [15] perform functions of large analytical devices in small, often disposable units. They rely primarily on microscale fluid flow as these systems must contain elements for the acquisition, pretreatment, separation, posttreatment, and detection of samples.