ABSTRACT

CONTENTS 14.1 Introduction.............................................................................................. 363 14.2 Microarrays and Immunoassays........................................................... 365

14.2.1 Peptide and Protein Microarrays ........................................... 365 14.2.2 Immunoassays........................................................................... 366

14.3 Bottom-Up Proteomics ........................................................................... 370 14.3.1 Overview of Proteomics Methodologies............................... 370 14.3.2 Bio-MEMS in Bottom-Up Proteomics.................................... 371

14.3.2.1 One-Dimensional Analyte Separations................. 371 14.3.2.2 Two-Dimensional Analyte Separations................. 372 14.3.2.3 Modifications to Fluidic Networks........................ 373 14.3.2.4 Sample Purification and Preconcentration........... 376 14.3.2.5 Bio-MEMS-Compatible Enzyme Reactors............ 379

14.4 Integrated Bio-MEMS Approaches in Proteomics ............................. 380 14.4.1 Integrated High-Throughput Devices

Using MALDI-MS..................................................................... 381 14.4.2 Integrated High-Throughput Devices Using ESI-MS......... 382

14.5 Summary................................................................................................... 383 References ............................................................................................. 384

The field of proteomics has emerged to directly characterize proteins at a global level. With the advances arising in genomics, the identified functional genes can provide a blueprint for the possible gene products that are the focal point of proteomics. A genome is a static entity whereas a proteome is

dynamic and must be studied individually. Proteomes vary due to splicing of mRNA during transcription and due to posttranslational modification. Moment-by-moment snapshots of a proteome can reflect the up-and downregulation of proteins, their modification status, and their interacting partners at a given cell state. Proteomics covers a broad range of subjects aimed at understanding complex cellular functions in a systematic manner. It is generally categorized in three areas: (1) large-scale protein identifications including isoforms and posttranslational modifications; (2) quantitative proteomics or global analysis of protein expression; and (3) the characterization of protein-protein interactions.