ABSTRACT

With the ever-increasing power of the computer and of the capacity of computational mechanics, simulation has become an indispensable tool in engineering. It is more so in earthquake engineering since earthquake ground motions are highly random and structural behaviors are nonlinear and inelastic, making random vibration solutions

difficult to obtain. Generally speaking, structural responses are functions of the entire ground excitation time history. Current codes use a scalar intensity measure such as spectral acceleration or displacement for the earthquake demand on structures. These measures do not reflect satisfactorily the effects of near source or effects due to higher modes and other important structural response behaviors caused by ground motions. For performance evaluation of complex structural systems, simulation of earthquake ground motions and time history response analysis have played a more and more important role.