ABSTRACT

I. Introduction ...................................................................................................................... 281

A. Classical and Quantum Mechanical Calculations of Force Field

and Vibrational Spectra in the Harmonic Approximation ...................................... 282

B. The Effect of Deuterium Substitution on the Vibrations Involving

Hydrogen Motion ..................................................................................................... 284

C. The Isotopic Substitution, the Potential Energy Distribution,

and the Frequency Isotopic Ratio (ISR).................................................................. 284

II. Sources of Anomalous H/D Isotope Effects in Hydrogen-Bonded Systems.................. 285

III. The Hydrogen Bond Effect on Anharmonicity of Protonic Vibrations.......................... 287

IV. Potential Energy Functions for the Proton-Stretching Vibrations .................................. 290

V. The Shape of the Potential and Evolution of IR Spectra

of Hydrogen-Bonded Systems ......................................................................................... 292

VI. Frequency Isotopic Ratio (ISR) and Its Correlation with Other Parameters

of Hydrogen Bonds .......................................................................................................... 294

VII. The Isotope Effect upon Other Spectroscopic Parameters

of Hydrogen-Bonded Systems ......................................................................................... 296

VIII. Low-Barrier Hydrogen Bonds ......................................................................................... 298

References..................................................................................................................................... 301

Vibrational spectroscopy is a sensitive probe of the potential energy surface of the molecule which

determines the dynamics of its nuclear motion. In theoretical treatment of vibrational spectra, the

Born-Oppenheimer approximation is adopted — which assumes that an effective potential for

the nuclear motion of the molecule is determined by its total electronic energy parametrized by the

stationary nuclear coordinates. The Born-Oppenheimer approximation is valid only in the vicinity

of a local minimum of this effective potential.