ABSTRACT

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

van der Waals Forces . . . . . . . . . . . . . . . . . . . . . . 666

Electrostatic Forces . . . . . . . . . . . . . . . . . . . . . 666

Steric Repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . 667

Ordered Colloidal Arrays . . . . . . . . . . . . . . . . . . . 667

3D Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

2D Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

Use of Silica Coating as a General

Stabilization Technique . . . . . . . . . . . . . . . . . . . . . 671

Special Optical and Electronic Properties of

Metal and Semiconductor Nanoparticles . . . . . . . . 673

Influence of Silica Coating on the

Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . 675

2D and 3D Assemblies of Core-Shell

Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

Damping of Chemical Reactions through

Silica Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . 685

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686

In this chapter we discuss a novel approach to the concept

of nanostructuring, which is based on coating metal or

semiconductor nanoparticles with silica, so that the final

morphology involves a silica sphere of the desired size

containing a core placed precisely at its center. Although

such concepts have been proposed before, it has only

recently been possible to synthesize such coated materials

in a reproducible manner. These composite spheres can

then be used as the building blocks of the nanostructured

material. The interest of these systems is due to the

unique optical and electronic properties of nanosized

metal and semiconductor particles.