ABSTRACT

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869

II. Forces Acting on Droplet Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870

III. Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872

A. Droplet Formation Using Electrostatic Field . . . . . . . . . . . . . . . . . . . . . . . . 872

B. Image Analysis of Droplet Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873

C. Determination of Microbead Size Distribution by Laser Light Scattering . . . 874

D. Extrusion of Animal Cell Suspensions Using Electrostatic

Droplet Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874

IV. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874

A. Parameters Affecting Microbead Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874

B. Effects of Electrode Geometry on Microbead Size . . . . . . . . . . . . . . . . . . . 875

C. Mechanisms of Droplet Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877

D. Microbead Size Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879

E. Forces Acting on Droplet Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880

F. Effects of Electrostatic Droplet Generation on Cell Viability . . . . . . . . . . . . 883

V. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885

Electrostatic atomization and electrostatically assisted atomization have been employed in a variety

of areas, including paint spraying [1], electrostatic printing [2], and cell immobilization [3].

The basic concept behind these applications involves electrostatic forces, which work to disrupt

the liquid surface to form a charged stream of fine droplets. The effect of electrostatic forces

on mechanically atomized liquid droplets was first studied in detail by Lord Rayleigh [4,5], who

investigated hydrodynamic stability of a jet of liquid with and without applied electric field.