ABSTRACT

I. Chemical Engineering and Scales — Macro, Micro, Nano, and Atto . . . . . . . . . . . . 3

A. Macro-and Micro-Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

B. Nano-Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

C. Atto-Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II. Nano Continua, Discontinua, and Spaces of Interactions . . . . . . . . . . . . . . . . . . . . . 4

A. Geometry and Forces of Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

B. Processes in Nano Continua, Discontinua, and Spaces of Interactions . . . . . . . . 7

1. Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Sorption Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Heterogeneous Catalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

C. Membrane Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1. Controlled Release Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. Separation Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

D. Stability of Nanosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

E. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

III. General Comments Related to the New Classification of Finely Dispersed Systems . 18

A. Research Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B. Research Strategy and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C. Characteristics, Approximation, and Abstraction Levels . . . . . . . . . . . . . . . . . . 18

D. Hierarchy of Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Classical chemical engineering has been intensively developed during the last century. Theoretical

backgrounds of momentum, mass, energy balances, and equilibrium states are commonly used as

well as chemical thermodynamics and kinetics. Physical and mathematical formalisms are related

to heat, mass, and momentum transfer phenomena as well as to homogeneous and heterogeneous

catalyses. Entire object models, continuum models, and constrained continuum models are

frequently used for the description of the events, and for equipment designing. Usual, principal,

equipments are reactors, tanks, and columns. Output is, generally, demonstrated as conventional

products, precision products, chemicals (solutions), and biochemicals.