ABSTRACT

The introduction of synthetic polymers has brought forth a wide range of applications to the modern world. Along with the various uses of these systems, tribology, the science of friction and wear, has had a pronounced effect on the knowledge of the properties achieved and the end-use possibilities for these materials. A major application of synthetic polymers influencing the world’s everyday life is textile fibers and related textile constructions. Textile materials are made from a variety of polymer types. The widely known textile related polymers are polyesters, polyamides, polyolefins, polyurethanes, and aramids. Fiber manufacturers produce a variety of chemical compositional forms within each class and introduce unique additives for special use characteristics. One fundamental challenge faces all fiber producers. These materials experience physical contact with numerous surfaces as well as rub against themselves. In contact with other fibers, other metal, or plastic surfaces, resistance to movement across the surface is noted and defined as friction. In a typical processing step, the number of surfaces and their nature, metal, hot, cold, smooth, rough, act as a destabilizing combination of friction forces. Therefore, the frictional forces imposed on these soft “plastic-type” materials frequently result in a number of product defects. To produce a quality product, friction needs controlling in a way to give uniform stress loads during use. A uniform and balanced friction load during processing eliminates most defects, that is, broken filaments, nonuniform fiber structure, static, and finally package formation. Unlike their naturally lubricated fiber counterparts, wool, cotton etc., the synthetic fibers require lubricants to control friction that is crucial to a formation of a quality fiber and its subsequent use. Therefore, application and extension of the principles learned in other business, that is, natural fiber and metalworking, were crucial for these new materials.