ABSTRACT

After an acute myocardial infarction, lost cardiomyocytes are replaced by a noncontractile fibrous tissue. Although it is suggested that heart has a small regenerative potential via cell proliferation [1], or stem cell recruitment [2], the rate of renewal is insufficient to compensate for myocyte loss. As a result, altered workload of a surviving myocardium may ultimately lead to deterioration in contractile function and congestive heart failure (CHF). Besides traditional pharmacological therapies (diuretics, β-blockers, angiotensine, and aldosterone inhibitors) [3] or heart transplant [4], investigators are evaluating innovative approaches for treatment of CHF including mechanical assist devices [5], dynamic cardiomyoplasty [6],

JDP: “2123_ch056” — 2006/2/16 — 16:16 — page 2 — #2

transmyocardial laser revascularization [7], and artificial heart [8]. Nevertheless, in end stage disease, heart transplant remains the only option with good long-term results [4]. However, inadequate availability of donor organs (∼10% of current needs [9]) requires new strategies for treatment of increasing number of heart failure patients.