ABSTRACT

In most documentation of geographical information systems (GIS) it is very rare to find details of the algorithms used in the software, but alternative formulations of the same process may derive different results. In this research several alternatives in the design of viewshed algorithms are explored. Three major features of viewshed algorithms are examined: how elevations in the digital elevation model are inferred, how viewpoint and target are represented, and the mathematical formulation of the comparison. It is found that the second of these produces the greatest variability in the viewable area (up to 50 per cent over the mean viewable area), while the last gives the least. The same test data are run in a number of different GIS implementations of the viewshed operation, and smaller, but still considerable, variability in the viewable area is observed. The study highlights three issues: the need for standards and/or empirical benchmark datasets for GIS functions; the desirability of publication of algorithms used in GIS operations; and the fallacy of the binary representation of a complex GIS product such as the viewshed.