ABSTRACT

In this chapter we will extend the use of the concepts of pressure drop calculations developed in Chapter 2 to determine the total pressure required for transporting gas in a pipeline under various configurations, such as series and parallel pipelines. We will identify the various components that make up this total pressure and analyze their impact on gas pipeline pressures. The effect of intermediate delivery volumes and injection rates along a gas pipeline, the impact of contract delivery pressures, and the necessity of regulating pressures using a control valve or pressure regulators will also be analyzed. Thermal effects due to heat transfer between the gas and the surrounding soil in a buried pipeline, soil temperatures and thermal conductivities, and the JouleThompson effect will be introduced with reference to commercial hydraulic simulation models. Equivalent lengths in series piping and equivalent diameters in parallel piping will be explained. We will compare different pipe looping scenarios to improve pipeline throughput and review the concept of the hydraulic pressure gradient. Calculation methodology for line pack in a gas pipeline will also be discussed.