ABSTRACT

The last decade has witnessed impressive progress in micromachining technology enabling the fabrication of micron-sized mechanical devices, which have become more prevalent in both commercial applications and scientific research. These micromachines have had a major impact on many disciplines, including biology, chemistry, medicine, optics, and aerospace, mechanical, and electrical engineering. This emerging field not only provides miniature transducers for sensing and actuation in a domain that we could not examine in the past but also allows us to venture into research areas where the surface effects dominate most of the physical phenomena [Ho and Tai, 1998]. Fundamental heat-transfer problems posed by the development and processing of advanced integrated circuits (ICs) and microelectromechanical systems (MEMS) are becoming a major consideration in the design and application of such systems. The demands on heat-removal and temperature-control functions in modern devices that have highly transient thermal loads require an approach providing high cooling rates and uniform temperature distributions.