ABSTRACT

Hemodynamic Changes Reflect Receptor Distributions?...................................... 173

10.1.3. Neurovascular Coupling: Many Neurotransmitters Are Vasoactive..................... 176

10.2. Methodologies ..................................................................................................................... 181

10.2.1. Magnetic Resonance Techniques Used for Collecting Hemodynamic Data ........ 181

10.2.1.1. The Original Technique: First Pass Bolus Mapping of Changes in

rCBV ....................................................................................................... 182

10.2.1.2. CBF-Based Techniques .......................................................................... 182

10.2.1.3. BOLD Techniques .................................................................................. 184

10.2.1.4. IRON CBV Mapping .............................................................................. 185

10.2.2. Advantages and Disadvantages of MR Techniques: Brain-Vein Controversies

Revisited ................................................................................................................. 188

10.2.3. Theoretical Framework for Contrast-to-Noise Ratio............................................. 190

10.2.4. Field Strength Dependencies of BOLD and IRON ............................................... 192

10.2.5. Nonhemodynamic MR Techniques of Potential Use for phMRI.......................... 192

10.2.5.1. Magnetic Resonance Spectroscopy ........................................................ 192

10.2.5.2. Manganese Enhanced MRI..................................................................... 193

10.3. The Confounds of Respiratory Gases and Anesthesia ....................................................... 194

10.4. Basic Drug Challenge Designs ........................................................................................... 197

10.4.1. Acute Model ........................................................................................................... 197

10.4.2. Antagonism and Agonism of Acute Drug Challenges .......................................... 198

10.4.3. The Acute Model for Examining the Effects of Chronic Drug

Administration ........................................................................................................ 199

10.4.4. Pharmacodynamics ................................................................................................. 199

10.4.5. Modeling CBV Changes Induced in the Brain Using a Pharmacologic Model ... 201

10.5. Current Applications of phMRI Techniques ...................................................................... 202

10.5.1. Criteria for Demonstration That the Hemodynamic Effects Are Due to the

Neurotransmitter System in Question .................................................................... 202

10.5.2. Application of the above Criteria to Study the Dopamine System....................... 204

10.5.3. phMRI Studies of Drug Abuse............................................................................... 206

10.5.3.1. Dopaminergic Drugs ............................................................................... 206

10.5.3.2. Nicotine ................................................................................................... 208

10.5.3.3. Heroin...................................................................................................... 208

10.5.4. phMRI Studies of Neurodegeneration ................................................................... 209

10.5.4.1. Rat and Monkey Models of Parkinson’s Disease .................................. 210

Acknowledgments......................................................................................................................... 212

References..................................................................................................................................... 212

The technique of functional magnetic resonance imaging (fMRI) using either relative cerebral

blood volume (rCBV), blood oxygenation level dependent (BOLD) or T

-based cerebral blood flow

(CBF) techniques has led to a revolution in brain mapping [1-3]. This is largely due to the fact that

the advent of a noninvasive tool with reasonable contrast to noise, spatial, and temporal resolution,

allows for studies to be conducted more easily than the prior positron emission tomography (PET)

studies of brain activation. Both fMRI and PET studies of brain activation are based upon the

coupling between neuronal activity, metabolism, and hemodynamics (see also Chapter 11,

Section 2). The possibility that fMRI may help understand the organization and flow of information

in the brain has led to an explosion in the number of centers dedicated to performing the technique.

In addition to the interest in fMRI by the neuroscience community, a number of clinical conditions

has the potential to benefit from the development of fMRI techniques, such as perfusion studies of

stroke, presurgical planning for conservation of eloquent cortex during brain surgery, and

investigation of motor systems in movement disorders. Most fMRI studies have used task

activation, such as photic stimulation or finger movements, or a cognitive challenge to induce

neuronal activity. However, it is also possible to elicit neuronal activity using pharmacologic

ligands. This approach has the potential to generate maps of the metabolic consequences of receptor

stimulation of relevance to a large number of cerebral disorders. Studies of receptor binding can be

performed in vivo using PET imaging, or post mortem with autoradiography. These techniques

allow one to use direct agonists or antagonists to map out the receptor binding parameters or the

density of these sites in the brain. Such studies are of diagnostic value for the examination of

dopamine receptor depletion in Parkinson’s disease (PD) and have great potential for study of

conditions such as drug abuse and schizophrenia.