ABSTRACT

Introduction: Extracellular Space................................................................................................. 168

Brief History ............................................................................................................................. 169

Volume Fraction and Width..................................................................................................... 169

Hindrance and Tortuosity ......................................................................................................... 170

Bulk Flow ................................................................................................................................. 170

Volume Transmission and Drug Delivery ............................................................................... 170

Tools and Methods to Study Extracellular Space in Real Time................................................. 171

Diffusion Measurements Reveal Extracellular Space Properties ............................................ 171

The Diffusion Equation and Its Meaning ................................................................................ 171

Choice of Molecular Probes for Extracellular Space .............................................................. 173

Delivery of Molecular Probes: Iontophoresis and Pressure Ejection...................................... 175

Iontophoresis......................................................................................................................... 176

Pressure Ejection .................................................................................................................. 178

Detection of Molecular Probes: Ion-Selective Microelectrodes, Integrative

Optical Imaging and Carbon-Based Microelectrodes.......................................................... 179

Ion-Selective Microelectrodes.............................................................................................. 179

Integrative Optical Imaging ................................................................................................. 181

Carbon-Based Microelectrodes ............................................................................................ 182

Diffusion Measurements Using Dual Microdialysis Probes.................................................... 184

Choice of Brain Tissue Preparation ............................................................................................. 185

Tissue Slices and Slabs ............................................................................................................ 185

Effects of Boundary Conditions on Diffusion Measurements in Brain Tissue....................... 185

In Vivo Preparations................................................................................................................. 190

Specialized Software for Point-Source Diffusion Analysis......................................................... 191

Software for Intophoresis and Pressure Ejection-VOLTORO, Walter and Wanda................ 191

Software for Integrative Optical Imaging-Vida and Ida....................................................... 191

Diffusion Properties of Brain Extracellular Space ...................................................................... 192

Brain under Physiological Conditions ..................................................................................... 192

Brain during Reversible Osmotic Challenge ........................................................................... 193

Brain in Pathological States ..................................................................................................... 194

Monte Carlo Simulation of Diffusion in 3D Media .................................................................... 194

MCell and DReAMM............................................................................................................... 195

Three-Dimensional Media Composed of Convex Cells .......................................................... 195

Dwell-Time Diffusion Theory.................................................................................................. 196

Three-Dimensional Media Containing Concave Cells and Lakes .......................................... 197

Future Directions .......................................................................................................................... 198

References .................................................................................................................................... 199

The extracellular space (ECS) may be imagined as a system of interconnected channels demarcated

by cellular membranes (Figure 10.1) and filled with an ionic solution, primarily NaCl, along with

macromolecules of the extracellular matrix, negatively-charged proteoglycans and glycosamino-

glycans (Margolis and Margolis 1993; Ruoslahti 1996; Novak and Kaye 2000). The ECS mediates

intercellular communication (Nicholson 1979) and the transport of nutrients and metabolites

(Sykova

´

et al. 2000), and it forms a reservoir of ions that establishes the resting potentials of

cells and mediate fluxes across the membranes. It also may serve to deliver therapeutic substances

to cells (Ulbrich et al. 1997; Saltzman 2001). All these processes are primarily mediated by

diffusion. The ECS diffusive properties are thus critical for neurotransmission over short and

FIGURE 10.1 Electron micrograph of a small region of the cerebral cortex of a rat with a prominent synapse.

The black areas between cells indicate the ECS, which may have been reduced in size as a consequence of the

histological processing. The asterisk indicates an extension of a dendritic profile into a dendritic spine. The

spine is joined by a synaptic cleft to a pre-synaptic terminal containing several small round vesicles filled with

transmitter molecules. The presynaptic membrane and vesicles, cleft and immediate post-synaptic membrane

constitute the synapse. Some of the round profiles abutting the dendrite are probably unmyelinated axons cut in

cross-section. The scale bar represents a distance of about 1 mm. (Reproduced from Nicholson, C., Rep. Prog.

Phys., 64, 815-884, 2001.)