ABSTRACT

Wireless mesh networks (WMN) commonly refer to distribute, cooperative communication networks formed by many nodes with wireless communication capability, some of which may be mobile [1,2]. The main characteristic that distinguished WMNs from their predecessors, wireless

ad hoc networks, is the cooperative communication capability, which is facilitated by the fact that each node may function as data source, data destination (consumer), or router, as appropriate. On account of this capability, WMN technology has many potential applications with a huge consumer demand. Performance of a WMN is determined by many factors, not the least important of which is the Medium Access Control (MAC) protocol. Already a number of MAC protocols have been proposed for use in WMNs, but the IEEE 802.15.3 standard for high data rate wireless personal area networks (HR-WPANs) [3] is often singled out as a viable candidate. The IEEE 802.15.3 standard offers a combination of Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) and TDMA at the MAC layer, as well as a set of several physical (PHY) layer modulation techniques that allow operation at data rates up to 55 Mbps. Recently, the 802.15.3 MAC has even been coupled with ultra wideband (UWB) PHY layer technology to offer even higher data rates at reduced collision probability [4]. Similar to Bluetooth [5] 802.15.3 devices are organized in piconets controlled by a dedicated piconet coordinator (PNC). Unlike Bluetooth, however, devices in a 802.15.3 piconet can directly communicate with one another, which simplifies routing and improves throughput. Together, these features make the 802.15.3 standard a promising candidate for the implementation of WMNs.