ABSTRACT

Resolution and chirality are like twins born on the day Louis Pasteur separated crystals of salts of

- and

-tartaric acid under his microscope. Since then, the separation of each enantiomer from a racemic mixture has been the primary means to obtain optically actively organic compounds. Only recently, the fast and explosive new developments in asymmetric synthesis involving the use of organometallic catalysts, enzymes, and chiral auxiliaries have begun to challenge the resolution approach. Even so, owing to its simplicity, reliability, and practicality, resolution is so far still the most widely applied method for the production of optically pure fine chemicals and pharmaceuticals.