ABSTRACT

INTRODUCTION Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanoscale, that is, at the level of atoms, molecules, and supramolecular structures. Given the inherent nanoscale functional components of living cells, it was inevitable that nanotechnology will be applied in biotechnology giving rise to the term nanobiotechnology, which will be used in this chapter. An up-to-date description of nanobiotechnologies and their applications in healthcare is given in a special report on this topic (1). This chapter will discuss the use of nanotechnologies-nanoparticles and various nanodevices such as nanobiosensors and nanobiochips-to improve drug discovery. Microfluidics has already proven useful for drug discovery. Through further miniaturization, nanotechnology will improve the ability to fabricate massive arrays in small spaces using nanofluidics and the time efficiency. This would enable direct reading of the signals from nanofluidic circuits in a manner similar to a microelectronics circuit where one does not require massive instrumentation. This would increase the ability to do high-throughput drug screening. Application of nanobiotechnologies to various stages of drug discovery is shown schematically in Figure 1. A classification of various nanobiotechnologies used for drug discovery is presented in Table 1.