ABSTRACT

Rhythmic phenomena have been thought to be an ubiquitous mechanism for every organism populating the earth to respond to daily and seasonal changes resulting from the planet’s rotation and orbit around the sun (Goldbeter, 2002). There is a widely accepted view that the normal function of biological rhythms is strongly correlated with the genes that control them. For example, several studies have identified several socalled clock genes and clock-controlled transcription factors through gene mutants in animal models (Takahashi, 1993; Reppert and Weaver, 2002). The implications of these detected genes in clinical trials will hold a great promise for the determination of an individualized optimal body time for drug administration based on a patient’s genetic makeup. It has been suggested that drug administration at the appropriate body time can improve the outcome of pharmacotherapy by maximizing potency and minimizing the toxicity of the drug (Levi et al., 1997), whereas drug administration at an inappropriate body time can induce severe side effects (Ohdo et al., 2001). In practice, body time-dependent therapy, termed “chronotherapy” (Labrecque and Belanger, 1991), can be optimized by implementing the patient’s genes that control expression levels of his/her physiological variables during the course of a day.