ABSTRACT

The subject of this handbook is the transport and hence mobility of chemicals in the environment. This is a broad subject and its theoretical foundations are derived from many scientific and engineering disciplines. The concept is applied in almost all areas of science and engineering. It is an interdisciplinary subject and not highly advanced for applications to chemicals in the environment. Chemical transport processes combine a diversity of biological, chemical, and physical mechanisms that drive the movement of molecules and particles in the multimedia compartments of the Earth’s surface. Whereas geoscientists focus primarily on the natural substances, environmental chemists and engineers focus primarily on the anthropogenic substances. Both groups must deal with nature on its own terms, a task that is very unlike

and engineered environments. Transport is the key chemodynamic process driving the migration of anthropogenic and natural chemicals throughout all compartments or phases of the Earth’s environment. Transport across phase boundaries results in the chemicals deposited in the adjoining phases and is manifest as enhanced thermodynamic partitioning, biota uptake, and reactions of decay and daughter product formation. The phases include air, water, soil, plants, fish, mammals, and all other organisms.