ABSTRACT

The development of pharmaceutical nanocarriers has been extensively studied over the past decades. Many studies have focused on the use of biodegradable polymers for the manufacture of these drug delivery systems (DDS). The importance of biodegradable nanoparticulate systems is determined by their potential for controlling the release of the drug, the stabilization of labile molecules (such as DNA, RNA, proteins, peptides, etc.) from degradation, and their capacity for site-specic drug targeting when properly surface-modied. In particular, the application of polymer-based DDS in oncology has grown markedly with the advent of the development of biodegradable polymers (Wang et al. 2008). In these polymers, drugs are either physically dissolved, entrapped, encapsulated, or covalently attached to the polymer matrix (Rawat et al. 2006). According to their functions and target of interest in the body, the resulting compounds may have different structures and composition. Thus, the panorama is widely extense and embraces drug carriers like micelles, liposomes, solid-lipid nanoparticles, dendrimers, nanotubes, and polymersomes (Ahmed et al. 2006;

3.1 Introduction ............................................................................................................................65 3.2 Generalities of Micellar Systems ............................................................................................66 3.3 Polymeric Micelles ................................................................................................................. 67 3.4 Lipid-Core Micelles as Pharmaceutical Carriers ................................................................... 67 3.5 Solubilization Process of Poorly Water-Soluble Drugs ..........................................................69 3.6 Micelles as Therapeutic Agents .............................................................................................. 70

3.6.1 Targeted Micelles ....................................................................................................... 70 3.6.2 “Passive” Micelle Targeting ....................................................................................... 70 3.6.3 pH-and Thermoresponsive Polymeric Micelles ........................................................ 71 3.6.4 “Active” Micelle Targeting ......................................................................................... 72 3.6.5 Antibody-Targeted Micelles ....................................................................................... 72

3.7 Micelles as Diagnostic Agents ................................................................................................ 73 3.8 Further Applications of Polymeric Micelles .......................................................................... 74

3.8.1 Intracellular Delivery of Micelles .............................................................................. 74 3.8.2 Micellar Complexes as siRNA Delivery Systems ...................................................... 75 3.8.3 Immunology and Micelles .......................................................................................... 76

3.9 Conclusion .............................................................................................................................. 76 References ........................................................................................................................................77