ABSTRACT

In this chapter, the approximate analytical methods for calculating heat transfer from arbitrary nonisothermal walls are analyzed. Most of the early solutions of conjugate heat transfer problems are based on those approximate methods. Moreover, approximate analytical methods are frequently used at present due to their simplicity and easy physical interpretation of the results.

The majority of practically important problems of flow and heat transfer are characterized by high Reynolds (Re) and Peclet (Pe) numbers. In such a case, viscosity and conductivity are significant only in thin boundary layers, and the system of Navier-Stokes and energy equations is simplified to boundary layer equations. For laminar steady-state flow of an incompressible fluid with constant thermophysical properties, these equations are [1]