ABSTRACT

The monitoring of micron-sized particles is of increasing importance in industry and for environmental and health studies (Noble and Prather, 1998; Holgate et al., 1999). Methods for measuring such particulates extend from precision methods made under laboratory conditions (e.g., laser scattering (Johnson and Gabriel (1981)), high-resolution microscopy, etc. (Ross (2005), to more robust methods used under real-world conditions (e.g., particle microweighing) (Meyer et al. (2000)); “black-smoke” optics (Hitzenberger et al. (1999)). Chromatic techniques have the potential for bridging the gap between these methods and particularly for addressing situations that may be complicated by interfering effects.