ABSTRACT

When in 1953 Watson and Crick proposed their famous double helix structure for desoxyribonucleic acid (DNA) (Watson and Crick 1953a), DNA was already known to be the support of genetic heredity (Avery et al. 1944, Herschey and Chase 1952). However, this major discovery signicantly changed the way of thinking about cellular processes such as the replication of DNA (during cell mitosis) by providing a much needed molecular and structural basis (Watson and Crick 1953b). Ever since, it gradually transpired that the study of molecular interactions within the cell was a necessary step in understanding its function. In the thirty years following the discovery of the double helix, numerous techniques have emerged to advance that study, which by now constitute the bulk of ‘molecular biology’. These techniques allow one to transform, synthesise and sequence DNA molecules and also to study and quantify the interactions between biomolecules (protein/DNA interactions, for example). The climax of this so-called genomic era was reached when the human genome sequencing program reached its goal two years ago.