ABSTRACT

Geochemical-Fate Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807 20.4.2 Geochemical Characteristics of Deep-Well-Injection Zones . . . . . . . . . . . . . . 810 20.4.3 In uence of Environmental Factors on

Waste/Reservoir Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812 20.4.4 In uence of the Deep-Well Environment on Biodegradation . . . . . . . . . . . . . . 815

20.5 Geochemical Characteristics of Hazardous Wastes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818 20.5.1 Inorganic versus Organic Hazardous Wastes . . . . . . . . . . . . . . . . . . . . . . . . . . 818 20.5.2 Chemical Properties of Inorganic Hazardous Wastes . . . . . . . . . . . . . . . . . . . 819 20.5.3 Chemical Properties of Organic Hazardous Wastes . . . . . . . . . . . . . . . . . . . . . 821

20.6 Methods and Models for Predicting the Geochemical Fate of Deep-Well-Injected Wastes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 20.6.1 Basic Approaches to Geochemical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 825 20.6.2 Speci c Methods and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826

20.7 Case Studies of Deep-Well Injection of Industrial Waste . . . . . . . . . . . . . . . . . . . . . . . . 836 20.7.1 Case Study No. 1: Pensacola, FL (Monsanto) . . . . . . . . . . . . . . . . . . . . . . . . . . 837 20.7.2 Case Study No. 2: Pensacola, FL (American Cyanamid) . . . . . . . . . . . . . . . . . 840 20.7.3 Case Study No. 3: Belle Glade, FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842 20.7.4 Case Study No. 4: Wilmington, NC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844 20.7.5 Case Study No. 5: Illinois Hydrochloric Acid-Injection Well . . . . . . . . . . . . . 846 20.7.6 Case Study No. 6: Texas Petrochemical Plant . . . . . . . . . . . . . . . . . . . . . . . . . 847

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849

The technology of deep-well injection has been around for more than 70 years. “Most Americans would be surprised to know that there is a waste management system already in operation in the U.S. that has no emissions into the air, no discharges to surface water, and no off-site transfers, and exposes people and the environment to virtually no hazards.”1 The U.S. Environmental Protection Agency (U.S. EPA) has stated that Class 1 wells are safer than virtually all other waste disposal practices for many chemical industry wastes.