ABSTRACT

As a result of the widespread use and acceptability of ICP-MS, the cost of commercial instrumentation has dramatically fallen over the past 20 years. When the technique was first introduced, $250,000 was a fairly typical amount to spend, whereas today one can purchase a quadrupole or time-of-flight (TOF) system for about $150,000. Although it can cost a great deal more to invest in magnetic sector technology or a quadrupole instrument fitted with a collision/reaction cell or interface, most laboratories that are looking to invest in the technique should be able to justify the purchase of an instrument without price being a major concern. One of the benefits of this kind of price erosion is that, slowly but surely, the AA and ICP-OES user community are being attracted to ICP-MS, and as a result, the technique is being used in more and more diverse application areas. Figure 19.1 shows a percentage breakdown of the major market segments being addressed by ICP-MS on a worldwide basis. Three points should be emphasized here. First, these data can be significantly different on a geographical or regional basis, because of factors such as a country’s commitment (or lack of it) to environmental concerns or the size of a region’s electronics or nuclear industry, for example. Second, many laboratories carry out more than one type of application, and as a result can be represented in more than one market segment. Finally, the research market segment has been listed as a separate category to show the instruments that are being used in an academic environment or for nonroutine applications. However, many universities, federal organizations, or corporate R&D groups might be using their instrumentation for research purposes in a particular application segment. For these reasons, these data should only be considered an approximation for comparison purposes.