ABSTRACT

Contents 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 14.2 AVIRIS and the Imaging Spectroscopy Measurement . . . . . . . . . . . . . . . . . . . 338

14.2.1 The AVIRIS Imaging Spectrometer Characteristics . . . . . . . . . . . . . . 339 14.2.2 The AVIRIS Measured Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 14.2.3 Range of Investigations Pursued with AVIRIS Measurements . . . . 345 14.2.4 The AVIRIS Data Archive and Selected Imaging Spectroscopy

Analysis Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 14.3 Objectives and Characteristics of a Spaceborne Imaging

Spectrometer for the Moon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 14.3.1 Objectives of the Moon Mineralogy Mapper . . . . . . . . . . . . . . . . . . . . . 348 14.3.2 Characteristics of the M3 Imaging Spectrometer . . . . . . . . . . . . . . . . . 348 14.3.3 Prospects for the M3 Imaging Spectrometer Data Set . . . . . . . . . . . . . 351

14.4 Objectives and Characteristics of a Future Spaceborne Imaging Spectrometer for the Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 14.4.1 Objectives of an Earth Imaging Spectrometer for Measuring

the State of Terrestrial and Aquatic Ecosystems . . . . . . . . . . . . . . . . . . 352 14.4.2 Characteristics of an Ecosystem Focused Earth

Imaging Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 14.4.3 Roles for High-Performance Computing . . . . . . . . . . . . . . . . . . . . . . . . . 354

14.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Imaging spectroscopy (also known as hyperspectral imaging) is a field of scientific investigation based upon the measurement and analysis of spectra measured as images. The human eye qualitatively measures three colors (blue, green, and red) in the visible portion of the electromagnetic spectrum when viewing the environment. The human eye-brain combination is a powerful observing system, however, it generally provides a non-quantitative perspective of the local environment. Imaging spectrometer

instruments typically measure hundreds of colors (spectral channels) across a much wider spectral range. These hundreds of spectral channels are recorded quantitatively as spectra for every spatial element in an image. The measured spectra provide the basis for a new approach to understanding the environment from a remote perspective based in the physics, chemistry, and biology revealed by imaging spectroscopy.