ABSTRACT

In modern agriculture, maximizing and sustaining crop yields are the main objectives. One of the major problems constraining the development of an economically successful agriculture is nutrient deficiency (Fageria and Baligar, 2005). After nitrogen, phosphorus (P) has more widespread influence on both natural and agricultural ecosystems than any other essential plant element (Brady and Weil, 2002). Phosphorus is an essential nutrient for both plants and animals. It is estimated that some 30 to 50% of the increase in world food production since the 1950s is attributable to fertilizer use, including P use (Higgs et al., 2000). Phosphorus deficiency in crop plants is a widespread problem in various parts of the world, especially in highly weathered acidic soils (Fageria and Baligar, 1997; Fageria and Baligar, 2001; Faye et al., 2006). Worldwide applications of phosphate fertilizers now exceed over 30 million metric tons annually (Epstein and Bloom, 2005). The deficiency of this element is related to several factors. These factors are low natural level in some soils, high immobile or fixation capacity of acidic soils, uptake of modern crop cultivars in large amount, loss by soil erosion, and use of low rate by farmers in developing countries. Biotic stresses such as crop infestation of insects, diseases, and weeds also reduce P use efficiency in crop plants.